113 Class Problems: Polynomial Fazorization

1. (a) The polynomial $x^{2}+1$ has no roots in \mathbb{R}. However when we go to \mathbb{C} two roots appear, namely $\pm i$. Why is this nowhere near enough to conclude \mathbb{C} is algebraically closed?
(b) Prove that the quotient ring $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field. What familiar field is it isomorphic to?
Solutions:
a) Just because $x^{2}+1$ has a root in \mathbb{C}, it does not imply that every non-constant polynomial does
b) $\phi: \mathbb{R}[x] \longrightarrow \mathbb{C}$ is a sunjectice honomeopphosm

$$
f(x) \longrightarrow f(i)
$$

$C\left(\sin \operatorname{ker} \phi=\left(x^{2}+1\right) .\left(\Rightarrow \frac{R[x]}{\left(x^{2}+1\right)} \cong \mathbb{C}\right)\right.$
$i^{2}+1=0 \Rightarrow\left(x^{2}+1\right) \subset$ Ken ϕ. Assume $\mathcal{F}(x) \in$ Kan ϕ

$$
x^{2}+1 X f(x) \Rightarrow f(x)=q(x) x^{2}+1+V(x), V(x) \neq 0, \operatorname{deg}(r(x))<2
$$

$\Rightarrow r(i)=0 \Rightarrow i \in \mathbb{R}$. Contradiction. Heme $K a \&=\left(x^{2}+1\right)$
2. Let F be a field and $f(x) \in F[x]$ be an irreducible polynomial of degree $n>1$. Does there exist $\alpha \in F$ such that $f(\alpha)=0_{F}$?
Solutions:
$f(x) \in F[x]$ inaducible, $\operatorname{deg}(f(x))>1$
Claim $f(x)$ adinits no roots in F.
Proof Let $\alpha \in F$ such that $f(\alpha)=0$
$\Rightarrow f(x)=(x-<x) g(x)$, for some $g(x) \in F[x]$
$\operatorname{deg}(f(x))>1 \Rightarrow \operatorname{deg}(g(x))>1 \Rightarrow(x-\alpha), g(x) \notin \neq[x]^{+}$
$\Rightarrow f(x)$ reducible. Contradiction
3. Is it possible for a finite field F to be algebraically closed?

Solutions:
No. Let $F=\left\{a_{1}, \ldots, a_{n}\right\}$ tum

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1_{F} \text { is degree } n>1
$$ admits no coots wi F.

4. (a) Recall that $\mathbb{Q}[i]=\{a+b i \mid a, b \in \mathbb{Q}\}$ is a field. Is it algebraically closed?
(b) Is the field $\mathbb{C}(z)$ algebraically closed?

Solutions:
a)

No. $\sqrt{2} \notin Q \Rightarrow \sqrt{2} \notin Q[i] \Rightarrow x^{2}-2 \in Q[1](x]$
has no rook in Qi]
b) No_{0}

Onsence that $\nexists f(z), g(z) \in \mathbb{f}[z]$ such that

$$
\left(\frac{f(z)}{g(z)}\right)^{2}=z
$$

Page 2

