113 Class Problems: Polynomial Fazorization

- 1. (a) The polynomial $x^2 + 1$ has no roots in \mathbb{R} . However when we go to \mathbb{C} two roots appear, namely $\pm i$. Why is this nowhere near enough to conclude \mathbb{C} is algebraically closed?
 - (b) Prove that the quotient ring $\mathbb{R}[x]/(x^2+1)$ is a field. What familiar field is it isomorphic to?

Solutions: a) Just be cause $x^2 + i$ has a root in \mathbb{C} , it does not imply that every non-constant polynomial does b) $\phi: \mathbb{R}(x_3) \longrightarrow \mathbb{C}$ is a surjectric homomorphism $f(x_3) \longrightarrow f(i)$ <u>Claim</u> Ker $\phi = (x^2 + i)$. ($\Rightarrow \mathbb{E}[x_3] \cong \mathbb{C}$) $i^2 + i = 0 \Rightarrow (x^2 + i) \subset Ker \phi$. Assume $\exists f(x_3) \in Ker \phi$ $x^2 + i \notf(x) \Rightarrow f(x) = g(x) x^2 + i + r(x_3), r(x_3) \neq 0, old g(r(x_3)) < z$ $\Rightarrow r(i) = 0 \Rightarrow i \in \mathbb{R}$. Contradiction, Hence $Ker \phi = (x^2 + i)$

- Let F be a field and f(x) ∈ F[x] be an irreducible polynomial of degree n > 1. Does there exist α ∈ F such that f(α) = 0_F?
 Solutions:
- $f(x) \in F[x] \quad \text{Invaduable}, \quad \text{obg}(f(x)) > 1$ $\frac{C(ain}{2} + (x) \quad admits \quad \text{no roots in } F.$ $\frac{Proof}{2} \quad (at \quad x \in F \quad \text{such that} \quad f(x) = 0$ $\Rightarrow \quad f(x) = (x x)g(x) \quad , \quad \text{for soma } g(x) \in F[x]$ $deg(f(x)) > 1 \quad \Rightarrow \quad deg(g(x)) > 1 \quad \Rightarrow \quad (x x), g(x) \notin F[x]^{*}$ $\Rightarrow \quad f(x) \quad reducible \quad Contradiction$

3. Is it possible for a finite field F to be algebraically closed?Solutions:

No. Let $F = \{a_1, \dots, a_n\}$ then $f(x) = (x - a_1)(x - a_2) \dots (x - a_n) + l_F$ is obgiven

n > 1

admits no voots in F.

4. (a) Recall that $\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}$ is a field. Is it algebraically closed? (b) Is the field $\mathbb{C}(z)$ algebraically closed? Solutions: No. $\forall z \notin \mathbb{Q} \implies \forall z \notin \mathbb{Q}[z] \implies x^2 - z \in \mathbb{Q}[z][zx]$ has no rooks in $\mathbb{Q}[z]$ b) No. Observe that $\nexists +(z), g(z) \in \mathbb{C}[z]$ Such that $(\frac{\mp(z)}{g(z)})^2 = z$ $\Rightarrow x^2 - z \in \mathbb{C}(z)[zz]$ has no root in $\mathbb{C}(z)$